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Abstract A numerical investigation has been undertaken to study fluid flow and heat transfer
through artificially rib-roughened channels. Such flows are of particular interest in internal cooling
of advanced gas turbine blades. The main objective is to test the suitability of recently developed
variants of the cubic non-linear k-1 model for the prediction of cooling flows through ribbed
passages. The numerical approach used in this study is the finite-volume method together with the
SIMPLE algorithm. For the modelling of turbulence, the Launder and Sharma low-Re k-1 model
and a new version of the non-linear low-Re two equation model that have been recently shown to
produce reliable thermal predictions in impinging jet flows and also flows through pipe expansions,
have been employed. Both models have been used with the form of the length-scale correction term
to the dissipation rate originally proposed by Yap and also more recently developed differential
version, NYap. The numerical results over a range of flow parameters have been compared with
the reported experimental data. The mean flow predictions show that both linear and non-linear
k-1 models with NYap can successfully reproduce the distribution of the measured streamwise
velocity component, including the length and width of the separation bubble, formed downstream
of each rib. As far as heat transfer predictions are concerned, the recent variant of the non-linear
k-1 leads to marked improvements in comparison to the original version of Craft et al. Further
improvements in the thermal prediction result through the introduction of a differential form of
the turbulent length scale correction term to the dissipation rate equation. The version of the
non-linear k-1 that has been shown in earlier studies to improve thermal predictions in pipe
expansions and impinging jets; it is thus found to also produce reasonable heat transfer
predictions in ribbed passages.

Nomenclature
A ¼ cross-section at area
EVM ¼ Launder and Sharma low-Re

linear k-1
Cp ¼ specific heat transfer capacity of

the fluid
D ¼ diameter of ribbed pipe

h ¼ rib height
H ¼ channel height
k ¼ turbulent kinetic energy
_m ¼ mass flow rate
NLEVM1 ¼ original non-linear k-1 proposed

by Craft et al. (1996)
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NLEVM2 ¼ Recent version of non-linear k-1
proposed by Craft et al. (1999)

Nu ¼ Nusselt number
NYap ¼ differential form of Yap term

recently modified by Craft et al.
(1999)

p ¼ pitch of the ribs
Pr ¼ molecular Prandtl number
qw ¼ local surface heat flux on the

wall
R ¼ pipe radius

Re ¼ Reynolds number
Ui ¼ mean velocity components (U,V)
Umax ¼ maximum velocity at each

section
uiu j ¼ Reynolds stress tensor
uiu ¼ turbulent heat fluxes
Yap ¼ original, algebraic form of the

Yap term as proposed by Yap
(1987)

w ¼ rib width
xi ¼ Cartesian coordinates (x, y)

Greek symbols
dij ¼ Kronecker delta
~1 ¼ isotropic dissipation rate
Q ¼ temperature
Qb ¼ cross-section-averaged fluid

temperature

Qw ¼ wall temperature
k ¼ thermal conductivity
m ¼ fluid dynamic viscosity
n ¼ fluid kinematic viscosity
r ¼ fluid density

Introduction
Rib roughened surfaces are a very efficient and widespread means of
cooling internally high pressure turbine components. These components are
exposed to very high operating temperatures, largely above their melting
point. Rib roughened channels enhance the heat transfer but they create
complex recirculating flows. It is consequently important that turbulence
models employed in the computation of such flows are able to predict
accurately the complex flow and heat transfer characteristics. Most of the
numerical studies cited in the literature employed high-Reynolds- number
turbulence models with wall-functions. Examples of such works include
Archarya et al. (1993), Lee et al. (1988) and Liou et al. (1993). However, it is
well-known that such approaches are unsuitable for the predictions of
separated flows with heat transfer occurring in internal cooling passages of
turbine blades due to the presence of curvature and rotation. Recently,
Iacovides and Raisee (1999, 2001) examined the capabilities of low-Re
number k-1 and second moment closures in predicting convective heat
transfer in various two- and three-dimensional and axi-symmetric rib
roughened passages. The results of these studies showed that the most
reliable predictions are produced through the use of low-Reynolds-number
second-moment closures. These efforts also showed that it was necessary to
include in the transport equation for the dissipation rate of turbulence
energy, a correction term for the near-wall turbulent length-scales. While
the correction term initially introduced by Yap (1987) is generally found to
be effective, the explicit appearance of the wall distance is felt to be a
disadvantage when it comes to flow computations over complex geometries.
In an effort to overcome this problem, Iacovides and Raisee (1999) proposed
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a differential form of the Yap term, which is independent of the wall
distance.

While the case for the use of second moment closures for heat transfer
computations in flows involving corner-induced separation is strong, a
more economical way in which the effects of turbulence anisotropy can be
considered is through the use of non-linear two equation models. In this
approach, only two transport equations for turbulence parameters are
involved, and the constitutive stress-strain relationship includes additional
non-linear (in terms of the strain rate or vorticity) terms. Another feature of
these non-linear models is that the parameter Cm, used in the determination
of the turbulent viscosity, is no longer given the constant value appropriate
for flows in local equilibrium, but often becomes a function of the strain
rate.

Craft et al. (1996) developed the non-linear eddy-viscosity model (NLEVM1),
including low-Reynolds-number effects. Moreover, they demonstrated that, in
order to exhibit the correct sensitivity to streamline curvature, such a
non-linear model must retain cubic terms in the stress-strain relationship. This
model was then used to predict a range of applications including flow in curved
channels, impinging jet flow etc. In each case it resulted in significant
predictive improvements in comparison to that produced by a linear
low-Reynolds-number k-1 model (EVM).

Parallel applications of this model in the computation of heat and fluid flow
through ribbed passages (Raisee, 1999) showed that severe problems of
numerical stability were encountered. Raisee traced these stability problems to
the form of the dependence of Cm on the strain rate, which, in flows over sharp
corners, led to very abrupt changes in turbulent viscosity. Raisee overcame
these stability problems by smoothing the variation of Cm, a practice that can
contaminate the numerical solution. The resulting comparisons indicated that
in flows through ribbed passages, the NLEVM1 returned levels of local wall
heat transfer are not only higher than those measured, but also higher than
those produced by the EVM. A parallel investigation by Cooper (1997), looking
at flow through an abrupt pipe expansion, identified that the excessive levels of
heat transfer produced by the NLEVM1 were, at least in part, due to the fact
that in regions of low near-wall strain rates, which would inevitably be present
in recirculation flows, Cm exceeded its equilibrium value. By limiting the
maximum value of Cm to that of flows in local equilibrium, Cooper was able to
improve the thermal predictions of the NLEVM1 in the abrupt pipe expansion,
though those of the EVM were still in closer agreement with the experimental
data.

More recently, Craft et al. (1999) undertook a numerical study to further
improve the thermal predictions of cubic low-Reynolds-number two equation
model. To pursue this aim, they concentrated on two types of test cases namely:
a round jet flow impinging on a heated flat plate and flow over an abrupt pipe
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expansion. Craft et al. (1999) introduced two modifications to the NLEVM1
proposed by Craft et al. (1996). These modifications are:

(1) The introduction of an alternative formulation for the turbulent viscosity
parameter Cm with strain rate, and

(2) The replacement of the Yap algebraic length-scale correction term with a
modified form of Iacovides and Raisee (1999) differential length-scale
correction term.

The proposed model not only improved the heat transfer predictions in both
pipe-expansion and impinging jet, but also removed the need for an explicit
wall distance to be prescribed in the model.

The objective of present study is to examine the capabilities of the modified
cubic low-Reynolds-number two equation model, proposed by Craft et al. (1999)
(NLEVM2), in predicting convective heat transfer in two-dimensional and
axi-symmetric rib roughened passages.

Cases examined
As shown in Figures 1 and 2, in these investigations fluid flow and heat
transfer through two types of passages have been examined: a plane channel
with ribs only along one wall and a ribbed pipe.

Five cases have been computed in total, with the details presented in Table I.
As shown in Figures 1 and 2, h denotes the rib height, p the rib spacing, D the
pipe diameter and H the channel height.

Figure 1.
Longitudinal
cross-section of the
ribbed plane channel

Figure 2.
Longitudinal
cross-section of the
ribbed pipe
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The flow Reynolds number is defined based on the mean streamwise velocity
and the channel height (or diameter of the pipe). Here, the local Nusselt number
is defined as:

Nu ¼
qwDðor H Þ

kðQw 2QbÞ
; ð1Þ

where D (or H) is the diameter of the pipe (or the channel height), k the thermal
conductivity of the fluid, qw the wall heat flux, Qw the wall temperature and Qb

the cross-section averaged fluid temperature which is obtained from:

Qb ¼

R
A QU dAR
A U dA

: ð2Þ

For all test cases, except the ribbed channel at Re ¼ 40;000; a constant heat
flux boundary condition was assumed for the duct walls and rib surfaces. In
accordance with the experimental measurements of Iacovides et al. (1998) for
the ribbed channel at Re ¼ 40; 000 adiabatic and constant heat flux boundary
conditions were applied on the smooth and ribbed walls, respectively. For the
ribs, a uniform heat flux was imposed on their base and conduction equation
was solved across the rib area protruding into the fluid.

Flow equation
All the flow equations are presented in Cartesian tensor notation.

(1) Mean flow equations. For a steady incompressible flow, the conservation
laws of mass, momentum and energy may be written as:

Continuity:

›Ui

›xi
¼ 0; ð3Þ

Momentum:

›ðUjUiÞ

›xj
¼ 2

1

r

›P

›xi
þ

›

›xj
n
›Ui

›xj
2 uiuj

� �
; ð4Þ

Passage geometry p/h h/H or h/D Re Pr Exp. data Comparisons

Ribbed channel 9 0.1 30,000 0.71 Rau et al. (1998) Velocity profile
Ribbed channel 10 0.1 122,400 0.71 Purchase (1991) Local Nu
Ribbed channel 10 0.1 40,000 5.45 Iacovides et al. (1998) Local Nu
Ribbed pipe 18 0.0625 24,000 0.71 Baughn and Roby (1992) Local Nu
Ribbed pipe 18 0.0625 63,400 0.71 Baughn and Roby (1992) Local Nu

Table I.
Details of cases

computed
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Energy:

›ðUjQÞ

›xj
¼

›

›xj

n

Pr

›Q

›xj
2 uju

� �
: ð5Þ

(2) Turbulence modeling equations. The turbulence models employed are the
widely used Launder and Sharma (1974) low Reynolds number k-1 model
(EVM) and a new version of the non-linear low Reynolds number k-1
(Craft et al., 1999) (NLEVM2). Computations with these models have been
carried out with the originally proposed (algebric) Yap correction term
(Yap, 1987) and also the new version of differential form (NYap), which is
free from any explicit wall distance (Iacovides and Raisee, 1999).

Linear low Reynolds number k-1 model
In this turbulence model, the Reynolds stresses and heat fluxes are obtained
from the eddy-viscosity and eddy-diffusivity approximations, respectively:

uiuj ¼
2

3
dijk2 nt

›Ui

›xj
þ

›Uj

›xi

� �
; ð6Þ

2uiu ¼
nt

su

›Q

›xi
; ð7Þ

where the turbulent viscosity, nt, is obtained from:

nt ¼ Cm fm
k2

~1
: ð8Þ

and the value of constants Cm and su are given in Table II.
To obtain nt, transport equations for the turbulence kinetic energy, k, and its

dissipation rate, ~1 are solved.
The transport equation for turbulent kinetic energy is written as:

›

›xi
ðUikÞ ¼

›

›xi
nþ

nt

sk

� �
›k

›xi

� �
þ Pk 2 ~12 2n

›
ffiffiffi
k

p

›xi

 !2

: ð9Þ

The dissipation rate of turbulent kinetic energy is obtained by solving the
equation:

C11 C12 Cm sk s1 su

1.44 1.92 0.09 1.0 1.3 0.9

Table II.
Empirical constants for
the k-1 model
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›

›xi
ðUi ~1Þ ¼

›

›xi
nþ

nt

s1

� �
› ~1

›xi

� �
þ C11f 1

~1

k
Pk 2 C12f 2

~12

k
þ E þ S1; ð10Þ

where the variable ~1 is the homogeneous dissipation rate which can be related
to the real dissipation rate through:

~1 ¼ 12 2n
›
ffiffiffi
k

p

›xj

 !2

; ð11Þ

and Pk is the generation rate of turbulent kinetic energy obtained from:

Pk ¼ 2uiuj
›Ui

›xj
: ð12Þ

The damping functions fm, f1 and f2 are given by:

f m ¼ exp½23:4=ð1 þ 0:02 ~RtÞ
2�;

f 1 ¼ 1;

f 2 ¼ 1 2 0:3 expð2 ~R
2

t Þ;

ð13Þ

where ~Rt ¼ k2=n ~1 is the local turbulent Reynolds number.
The model constants are given in Table II.
The term E was first introduced by Jones and Launder (1972) and is

expressed as:

E ¼ 2nnt
›2Ui

›xj›xk

� �2

: ð14Þ

The extra source term, S1, stands for the Yap correction term which is
discussed in the later sections.

Non-linear low Reynolds number k-1 model
In this turbulence model, turbulent stresses are obtained via the constitutive
relation:

uiuj ¼
2

3
kdij 2 ntSij þ C1

ntk

~1
ðSikSkj 2 1=3SklSkldijÞ

þ C2
ntk

~1
ðVikSkj þVjkSkiÞ þ C3

ntk

~1
ðVikVjk 2 1=3VlkVlkdijÞ

þ C4
ntk

2

~12
ðSkiVlj þ SkjVliÞSkl þ C5

ntk
2

~12
ðVilVlmSmj þ SilVlmVmj

2
2

3
SlmVmnVnldijÞ þ C6

ntk
2

~12
SijSklSkl þ C7

ntk
2

~12
SijVklVkl;

ð15Þ

where Sij and Vij are strain and vorticity rate tensors:
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Sij ¼
›Ui

›xj
þ
›Uj

›xi

� �
; Vij ¼

›Ui

›xj
2

›Uj

›xi

� �
: ð16Þ

The turbulent heat fluxes, uiu; are modelled using the simple eddy-diffusivity
approximation (equation (7)).

The model coefficients, C1-C7, have been calibrated by Craft et al. (1993),
by reference to several flows, including homogeneous shear flows, swirling
flows and curved channel flows. The values of these coefficients are given in
Table III.

The k and ~1 transport equations and eddy-viscosity formulation are similar
to those of EVM; however, the following modifications are proposed by Craft
et al. (1996, 1999).

(1) Modeling of Cm

In the original NLEVM1 Cm is a function of the strain and vorticity
invariants ~S and ~V:

Cm ¼
0:3

1 þ 0:35h1:5
f1 2 exp½20:36 expð0:75hÞ�g; ð17Þ

with

~S ¼
k

~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5SijSij

q
; ~V ¼

k

~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5VijVij

p
; ð18Þ

and h ¼ maxð ~S; ~VÞ:
Owing to the strong dependence of equation (17) on the strain rate, the use of

the above Cm expression in the computation of flows over sharp corners results
in instability problems. This problem has been recognized by both Cooper
(1997) and Raisee (1999) in their computation of similar flows. To overcome
these instability problems, the following form of Cm function was proposed by
Craft et al. (1999):

Cm ¼ min 0:09;
12

1 þ 3:5hþ f RS

� �
; ð19Þ

where

C1 C2 C3 C4 C5 C6 C7

20.1 0.1 0.26 210C2
m 0 25C2

m 5C2
m

Table III.
Values of coefficients in
the non-linear k-1 model
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f RS ¼ 0:235½maxð0;h2 3:333Þ�2expð2 ~Rt=400Þ: ð20Þ

(2) Near wall damping
In the non-linear two equation model, the viscous damping function of nt is

provided by the function, fm:

f m ¼ 1 2 exp 2
~Rt

90

� �1=2

2
~Rt

400

� �2
( )

: ð21Þ

The near-wall source term E is expressed as:

E ¼
0:0022

~Sntk
2

~1

›2Ui

›xk›xl

� �2

~Rt # 250

0 ~Rt . 250

8>><
>>: ð22Þ

(3) Length-scale correction terms
In separated flows, the near-wall length-scale becomes too large, resulting in

excessively high levels of near-wall turbulence. To overcome this behavior,
Yap (1987) introduced an extra source term into the dissipation rate equation
which is based on the wall distance y:

S1 ¼ Yap ¼ 0:83
~12

k
max½ðl=le 2 1Þðl=leÞ

2; 0�; ð23Þ

where l is the turbulent length-scale, k3=2= ~1; the equilibrium length-scale
le ¼ 2:55y and y is the distance to the wall.

To eliminate the dependence of the above source term on the wall distance, a
differential form of the length-scale correction was proposed by Iacovides and
Raisee (1999):

S1 ¼ NYap ¼ max CvFðF þ 1Þ2
~12

k
; 0

� �
ð24Þ

where

F ¼ f½ð›l=›xjÞð›l=›xjÞ�
1=2 2 dle=dyg=Cl ; ð25Þ

represents the difference between the predicted length-scale gradient, with
l ¼ k3=2= ~1; and the “equilibrium length-scale gradient”, dle/dy, defined by:

dle=dy ¼ Cl½1 2 expð2B1
~RtÞ� þ B1Cl

~Rt expð2B1
~RtÞ; ð26Þ

where Cl ¼ 2:55; B1 ¼ 0:1069 and Cv ¼ 0:83:
In order to reduce the amount of correction in the regions of high h, a

modified version of the Iacovides and Raisee differential correction term was
proposed by Craft et al. (1999), where the coefficient Cv is taken as:
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Cv ¼
0:83 minð1; ~Rt=5Þ

½0:8 þ 0:7ðh 0=3:33Þ4expð2 ~Rt=12:5Þ�
; ð27Þ

where the quantity h 0 is defined in the same way as h but, to enhance stability,
the Kolmogorov timescale is used as a lower limit on the timescale k= ~1
employed in the expressions for ~S and ~V; in a manner similar to the proposal of
Durbin (1991):

~S ¼ max k= ~1;
ffiffiffiffiffiffiffiffi
n=1

ph i ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
SijSij

r
; ~V ¼ max k= ~1;

ffiffiffiffiffiffiffiffi
n=1

ph i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
VijVij

r
: ð28Þ

The limited ~Rt dependent damping is included for numerical stability.

Numerical method
The general form of the governing equations of mean flow, temperature and
turbulence fields may be written as:

›

›x
rrmc Uf
� �

þ
›

›y
rrmc Vf
� �

¼
›

›x
Gfrmc

›f

›x

� �
þ

›

›y
Gfrmc

›f

›y

� �
þ rmc S

f ð29Þ

where x and y represent the coordinates in the stream-wise and cross-stream (or
radial) directions, respectively, rc is the radius of curvature, and the index m
equals one for the axisymmetric flows and zero for the plane cases. GF is an
effective diffusion coefficient and S F denotes the source term. In the present
study, the above transport equation is solved using finite-volume methodology
in a semi-staggered grid system, which is shown in Figure 3. In this
arrangement, both velocity components (U, V) are located at the same nodal
position which is staggered in relative to the pressure nodes. All the Reynolds
stresses and scalars are stored at the pressures nodes. The mean velocity
gradient terms that appear in the equations for k, 1 and the Reynolds stresses
are thus discretised at the scalar nodal locations from the four surrounding
velocity nodes. The hybrid differencing of Spalding (1972) is used for the
approximation of the convective terms. The pressure field is linked to that of
velocity through the well-known SIMPLE, pressure correction algorithm. To
avoid stability problems associated with pressure-velocity decoupling, a form
of the Rhie and Chow (1983) interpolation scheme, suitable for a semi-staggered
mesh, is also employed. The details of the above-mentioned numerical methods
are described by Raisee (1999). The fact that a low-Reynolds-number non-linear
model of turbulence was used necessitated the introduction of several
stabilisation measures.

In the discretization of the mean momentum equations, the turbulent
stresses are decomposed into two components: the enhanced linear component
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which, when possible, includes contributions from the last two cubic terms, and
the higher order component, uiuj; defined by:

uiuj ¼
2

3
kdij 2 n 0

tSij þ uiuj;

with

n 0
t ¼ nt 2

ntk
2

~12
min½ðC6SklSkl þ C7VklVklÞ; 0�: ð30Þ

This decomposition was obtained by noting that the linear and the final two
cubic terms in equation (15) can be written as:

2
�
nt 2

ntk
2

~12
ðC6SklSkl þ C7VklVklÞ

�
Sij: ð32Þ

The enhanced linear component is then directly absorbed into the turbulent
diffusion, employing an effective viscosity ðnþ n 0

tÞ; and only the gradients of
the remaining non-linear components appear explicitly in source term SU.
The mean momentum equation is thus written as:

›

›xj
ðUiUjÞ ¼ 2

1

r

›P

›xi
þ

›

›xj
½ðnþ n 0

tÞSij 2 uiuj�: ð33Þ

In the discretization of the k transport equation, the near-wall dissipation term,
2n ð›k1=2=›xjÞ

2; is always divided by the existing (previous iteration) value of k
at node P and transferred to the left-hand side of the discretized transport
equation, making a positive contribution to the diagonal coefficient AP.

Figure 3.
A partially staggered

grid arrangement.
(1) Velocity cell, and

(2) pressure cell

Application of a
non-linear k-1

model

295



The difference between the generation rate of the turbulent kinetic energy Pk
and the dissipation rate ~1 is also similarly treated when is negative:

A0
P ¼ AP þ ½2n ›k1=2=›xj

� 	2

P
2 minðPk 2 ~1; 0ÞP�

Vol

k+P
; ð34Þ

Su ¼ maxðPk 2 ~1; 0ÞPVol; ð35Þ

where k+P is the existing value of k at node P, and Vol is the cell volume.
In the discretization of the transport equation for the dissipation rate, the

difference between the generation and destruction rate of ~1 is also absorbed
into the diagonal coefficient AP when negative:

A0
P ¼ AP 2 minðC11Pk 2 C12 ~1; 0ÞP

Vol

kP
; ð36Þ

S0
u ¼ Su þ maxðC11Pk 2 C12 ~1; 0ÞP

~1 +
P

kP
Vol: ð37Þ

The cases examined involved passages that are long enough for repeating flow
conditions to prevail over each rib interval. Consequently, the numerical flow
domain covers only one rib interval, and repeating flow and thermal boundary
conditions are applied. The repeating flow boundary conditions are imposed by
first applying uniform bulk corrections on velocity and pressure at the exit
plane, to satisfy the mass continuity, and then setting the entry conditions
same as those at the exit plane. For the temperature field, the temperature
distribution at the entry plane is set equal to that at the exit plane, but with a
bulk adjustment which maintains a constant temperature at a reference point,
within the entry plane.

Computations were performed on a fine grid ð91 £ 110Þ; with 37 cells on the
rib height. The first grid point is located at y* < 0:1 y* ¼ y

ffiffiffi
k

p
=n

� �
: In Figure 4,

Nusselt numbers obtained using the EVM on a coarse grid ð51 £ 60Þ; fine grid

Figure 4.
Predicted distribution of
the local Nusselt number
through the ribbed plane
channel
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ð91 £ 110Þ; and a finer grid ð111 £ 130Þ are presented. Though grid refinements
from the medium grid to the fine grid caused some differences in the heat
transfer predictions, computations on a finer mesh 111 £ 130ð Þ showed no
significant difference in the local Nusselt number distribution. Consequently,
results obtained on the 91 £ 110 mesh are regarded as grid independence. All
the flow and heat transfer computations, presented in the subsequent section,
have been obtained on the 91 £ 110 mesh. More details can be found in the
work of Raisee (1999).

Results and discussion
The predicted velocity vectors and streamlines, using the EVM and NLEVM2
with the NYap term, for flow through the ribbed duct in Re ¼ 30;000 and
122,400, are shown in Figure 5. The vector plot for the ribbed channel indicates
that the oncoming flow separates at the front corner of the rib and then
reattaches on the wall downstream of the rib. As a result of this process, a large
recirculation bubble is created. Downstream of the reattachment point, the
entrained flow builds up a new boundary layer. The latter is accelerated by the
main stream through the shear forces, impinges on the next rib and forms a
smaller recirculation bubble. There is a good agreement between measured and
calculated recirculation lengths. The recirculation lengths predicted by the
EVM and NLEVM2 are about 4.5 and 4.8 times the rib height, respectively,
which are close to the measured value of 4.3 times of the rib height reported by
Rau et al. (1998). Mean flow predictions for the ribbed channel at Re ¼ 122; 400
indicated that increasing Reynolds number has insignificant effects on the flow
features. The predicted velocity vectors and streamlines for the ribbed pipe are
similar and are thus not shown here.

In Figure 6, the predicted streamwise velocity profiles for the ribbed channel
at Re ¼ 30;000 using the EVM and NLEVM2 with the NYap are compared
with the measured data of Rau et al. (1998). The mean flow field predictions of
both models seem to be similar and there is a good agreement between
predictions and experimental data everywhere except over the rib, where the
predicted rise in velocity with wall distance is not as steep as that measured.

The performance of the EVM and NLEVM1 in predicting the thermal field
through the ribbed pipe and ribbed plane channel at higher Re numbers are
shown in Figure 7 (Raisee, 1999). It should be mentioned that the computations
were carried out with the original form of the Yap correction term in the
dissipation rate equation. For both test cases, over most of the rib interval, the
NLEVM1 overestimates the measured Nusselt number levels and also returns
the wrong variation, predicting higher Nu levels over the second half of the
interval. The EVM, on the other hand, produces the right distribution and also
reasonable Nusselt number levels. The predicted location of the maximum wall
heat transfer coefficient, using the NLEVM1, is about 25 per cent further
downstream compared to that of the EVM.
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Figure 5.
Predicted velocity
vectors and streamlines
in a ribbed channel at
(a, b) Re ¼ 30,000, and
(c) Re ¼ 122,400
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Figure 8 shows comparisons between measured and predicted Nusselt number
distributions, for the NLEVM2. A comparison with the Nu predictions of
Figure 7 shows that the NLEVM2 results in considerable predictive
improvements in comparison to the NLEVM1. Not only the actual Nusselt
number levels are now closer to those measured, but the predicted variation in
Nusselt number over the rib interval is also in closer accord with the data.
Moreover, this predictive improvement is observed at all Reynolds numbers
and both ribbed passage geometries examined. Figure 8 also reveals that the

Figure 6.
Velocity profiles for the

ribbed channel at
Re ¼ 30,000
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thermal predictions of the non-linear k-1 are further improved when the original
form of the Yap term is replaced by the differential form (NYap) proposed by
Craft et al. (1999). These predictive improvements are also observed for all the
cases computed.

In Figure 9, the local Nusselt numbers obtained using EVM and NLEVM2
with the NYap are compared with the measured data. The relatively small
differences between the two sets of predictions and also the close overall
agreement between both sets of predictions and the measurements are in
marked contrast to the comparisons of Figure 7. The larger differences between
the two sets of predictions appear to be for the ribbed pipe and ribbed channel,
at the lowest Reynolds numbers of Re ¼ 24; 000 and 40,000, respectively. Here,
the non-linear model first returns a very gradual rise in Nusselt number in the
separation bubble after the rib and further downstream, after reattachment, it
predicts Nusselt number levels higher than those of the EVM. These predictive
differences between the NLEVM2 and the linear EVM tend to diminish at the
higher Reynolds numbers.

Figure 7.
Predicted distribution of
the local Nusselt number
through: (a) ribbed pipe,
and (b) ribbed plane
channel (Raisee, 1999)
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Figure 8.
Predicted distribution of
the local Nusselt number

through: (a, b) ribbed
pipe, and (c, d) ribbed

plane channel
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Figure 9.
Predicted distribution of
the local Nusselt number
through: (a, b) ribbed
pipe, and (c, d) ribbed
plane channel
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There is no doubt that the more recent version of the cubic non-linear k-1
(NLEVM2), considerably improves the thermal predictions of the original
version (NLEVM1) in the ribbed passages. Besides producing thermal
predictions superior to those of the EVM in pipe expansion and impinging jet
flows (Craft et al., 1999), this version of the non-linear k-1 is also shown in this
study to produce reliable thermal predictions in ribbed passages.

Conclusions
This study has examined the capabilities of a modified version of Craft et al.
(1996) cubic two-equation model (NLEVM2) in predicting convective heat
transfer through rib-roughened passages. From the computational results
presented, the following conclusions can be drawn.

. The mean flow predictions of the modified cubic two equation model are
similar to those obtained using the EVM.

. The heat transfer predictions of the recent version of cubic non-linear k-1
model (NLEVM2) are markedly closer to the data than those of the
original version (NLEVM1). The heat transfer coefficient distribution
returned by the NLEVM2 with the Yap algebraic length-scale correction
term is similar to the Nusselt distribution obtained in the experiments, but
the heat transfer levels are overestimated.

. The replacement of the Yap correction term with the NYap differential
length-scale correction term further improves the heat transfer
predictions of the NLEVM2.

. At high Reynolds numbers, the predicted Nusselt number levels
returned using NLEVM2 with the NYap closely match the measured
values within the recirculation region, but still higher in the developing
region.

. The version of the non-linear k-1 that earlier studies have shown to
produce improved, relative to the linear k-1, thermal predictions in abrupt
pipe expansions and impinging jet flows, is also shown here to produce
reliable thermal predictions in ribbed cooling passages.
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